Day 1: Wednesday, September 27, 2006

10.00 | TypeTech Welcome
15 | Introduction to the Fontlab Ltd. products
30 | Status of OpenType Support 2006
45 | Ted Harrison

11.00 | New tech for math fonts & typesetting
15 | Hint like Hercules: Font screen quality in FlS5
30 | Encode like the Emperor: FL55 Glyph Naming and Encoding
45 | Yuri Yarmola, Adam Twardoch

12.00 | Advanced .ttf applications
15 | Tim Ahrens
30 | Lunch
45 | Break

13.00 | Advanced .otf theory
15 | OpenType: like Odysseus:
30 | Yury Yarmola, Adam Twardoch
45 | Adam Twardoch

15.00 | Is lying OK?
15 | Thomas Phinney
45 | Break

16.00 | Automating font production
15 | Kern like the King: FlS5 Metrics Window
30 | Yuri Yarmola
45 | Ben Kiel

17.00 | How dtl FontMaster automatically produces OpenType layout features
15 | Dr. Jürgen Willrodt
30 | Adam Twardoch

18.00 | Reception
45 | Sponsored by dtl

Day 2: Thursday, September 28, 2006

10.00 | TypeTech Welcome
15 | Introduction to the Fontlab Ltd. products
30 | The ubiquitous EULA
45 | Ted Harrison

11.00 | Advanced .otf theory
15 | OpenType: like Odysseus:
30 | Yury Yarmola, Adam Twardoch
45 | Adam Twardoch

12.00 | Advanced .ttf applications
15 | Hint like Hercules: Font screen quality in FlS5
30 | Encode like the Emperor: FL55 Glyph Naming and Encoding
45 | Yuri Yarmola, Adam Twardoch

13.00 | Advanced .otf theory
15 | OpenType: like Odysseus:
30 | Yury Yarmola, Adam Twardoch
45 | Adam Twardoch

15.00 | Is lying OK?
15 | Thomas Phinney
45 | Break

16.00 | Automating font production
15 | Kern like the King: FlS5 Metrics Window
30 | Yuri Yarmola
45 | Ben Kiel

17.00 | How dtl FontMaster automatically produces OpenType layout features
15 | Dr. Jürgen Willrodt
30 | Adam Twardoch

18.00 | Reception
45 | Sponsored by dtl

Speakers

Tim Ahrens
	tim@tim-ahrens.de

Frank E. Blokland
	blokland@dutchtypelibrary.com

Victor Gaultney
	vtype@gaultney.org

Ted Harrison
	ted@fontlab.com

Professor R. K. Joshi
	kjoshi@sdcnunimumbai.in

Ben Kiel
	ben@houseind.com

Sergey Malkin
	sergeym@windows.microsoft.com

Peter Martin
	peter.martin@sil.org

Thomas Phinney
	info@anotherfoundry.com

Dr. Jürgen Willrodt
	juergen@urwpp.de

Christopher Slye
	cslye@adobe.com

SIL International, USA
	Conference Organization

Adobe, USA

Microsoft, USA

Fontlab Ltd., USA

House Industries, USA

C-DAC, Mumbai, India

C-DAC, Mumbai, India

URW++, Germany

Microsoft, USA

Fontlab Ltd., Russia

TypeTech September 27-28, 2006

ATypI 2006

Typographical Journeys

Lisbon, Portugal

Quick Look Guide
That are designed on the basis of the designer’s technologies for the reproduction of glyphs and combining of shapes it stands between elements. Rather close to that of the true glyphs. The output generated by the model is even true condensed fonts. — since the horizontal and vertical changing the stroke weight. The method can applications such as generating semibold fonts. Tim Ahrens Advanced MM theory Thomas Phinney Advantages and limitations of axis-based approaches to font family development, including some not-very-well-known technical issues around linear interpolation: how can something that’s a straight line in all masters be “linked” in interpolation, and how can this be fixed or avoided? Reasons for deferred overlap removal; problems most severe in heavy or lightweight weights (you might want to intermediate and inside-out masters). Is it okay? Thomas Phinney An introduction to issues around Unicode encodings and OpenType — Location features where it may be tempting to construct fonts whose Unicode features do not necessarily accurately map to what the font does. Then, open discussion of varying views on the topics. Gathering script information as a collaborative community Ken George The development of Non-Latin and complex Latin fonts is hindered by a lack of information. Designers (sometimes) use common Latin letters because they don’t have easy access to script and design guidance on other scripts. There is actually a great deal of expertise available, but it is either not written down, not available online, or not easily found. Current efforts to gather such information as a good step in the right direction, but are limited in scope. This session will begin with a brief presentation of the problem and an outline of some ideas for a collaborative site — ScriptSource. The bulk of the session, however, will be an open discussion about how the type and computing communities could best manage and share expertise. Come with creative ideas! Automating font production using FontLab Studio Frank E. Blokland To be announced. The obituary Etila Ted Harrison Will introduce the demonstration of the Unicode .eula. Abstract: Isotesting your fonts from casual piracy and in improving your font sales. The .eula is not incorporated into Fontlab tools and will be available to all font foundries by the time the next generation of tools appear. With a .eula in your fonts you can track licenses, solicit font upgrade sales, and make your customers easily and painlessly aware of their rights and obligations under the .eula. From degree to 5-tier Vedic Sanskrit Professor R. B. Joshi The linear concept and the practice of Hot Metal types was common throughout the world. However in India there was an additional feature added in case of degree of karya. The karya feature as in C and in font Latin script was exhaustively used to compose three tier Devanagari Degree types to accommodate vowel matrix (twin or separate matrix) in Latin which had to be positioned properly on the top, bottom and sides of a base glyph. Such loose accent marks of different widths had to be composed and placed securely, using various metal sticks called degrees. This positioning technique was used in the Degree types. 5-Tier Vedic Sanskrit OpenType by name ‘RighvVeda’ has been designed recently under Project Indus at c/o cgt bureau. This type has 10 features, 36 substitution lookups, 6 position lookups, 82 ligature rules, 66 glyph groups, 1748 glyphs inclusive of 2531 constituent conjunct ligatures. This was a challenging task of designing a typeface as well as planning a shaping engine architecture in order to process syllabic compositions in Vedic Sanskrit language using OpenType script. It is interesting that this positioning feature of degree types from India were invented in the soft rules and tables in Vitruv (1695, 1819) India and further in the OpenType format. The presentation will draw comparatively analyzing font features between these two font design technologies and present the process of designing the font “RighvVeda”. CSS font families & OpenType 1.5 Thomas Phinney Windows Vista introduces a new graphics and text model, Windows Presentation Foundation (WPF), which is also available for Windows XP. WPF borrows from the Web’s CSS specification a model of how font families are produced, in that all members of a family are assumed to differ in one or more of weight, width, or slope (WWS for short). Learn about how WPF processes font families to get WWS information, and what new controls are being made available for OpenType 1.5 to better control this processing and how your font’s menu names will appear in WPF applications. TypeTech: Taming tables Adam Twardoch OpenType and TrueType fonts are collections of bitmaps that are stored in different purposes: store the glyph information, hinting, OpenType Layout tables, writing feature definitions, etc. When you upgrade existing fonts, develop fonts using other tools such as Microsoft Visual Studio or Adobe Creative Suite, and embed some proprietary data into your fonts, you may want to have close look at the structure, advantages and possibilities of this system. Amongst other things, the interaction between the various features and the character layout file (.cfa) will be explained in detail New tech for math fonts & typsetting Sergey Malkin Details on Microsoft’s new math typography systems and how to make fonts with the new font tables that support them. Advanced .mm applications Tim Ahrens This speech presents methods for handling master matters beyond the conventional applications such as generating small glyphs. The “boldness” information in a .mm font is used to change the size of the glyphs without changing the stroke weight. The method can be used to create small caps, Cyrillic lowercase and — since the horizontal and vertical scale factors can be chosen independently even true condensed fonts. Comparisons to existing typefaces show that the output generated by the model is rather close to that of the true glyphs. This method allows for subsequent manual refinements. As a mathematical tool the processing and combining of shapes it stands between the theories for the construction and production technologies for the reproduction of glyphs that are designed on the basis of the designer’s visual judgments. It integrates the "two cultures" as described by Matthew Carter, overcoming "that dichotomy" which is deep in our habits of thought and education. 

That are designed on the basis of the designer’s technologies for the reproduction of glyphs and combining of shapes it stands between elements. Rather close to that of the true glyphs. The output generated by the model is even true condensed fonts. — since the horizontal and vertical changing the stroke weight. The method can applications such as generating semibold fonts. Tim Ahrens Advanced MM theory Thomas Phinney Advantages and limitations of axis-based approaches to font family development, including some not-very-well-known technical issues around linear interpolation: how can something that’s a straight line in all masters be “linked” in interpolation, and how can this be fixed or avoided? Reasons for deferred overlap removal; problems most severe in heavy or lightweight weights (you might want to intermediate and inside-out masters). Is it okay? Thomas Phinney An introduction to issues around Unicode encodings and OpenType — Location features where it may be tempting to construct fonts whose Unicode features do not necessarily accurately map to what the font does. Then, open discussion of varying views on the topics. Gathering script information as a collaborative community Ken George The development of Non-Latin and complex Latin fonts is hindered by a lack of information. Designers (sometimes) use common Latin letters because they don’t have easy access to script and design guidance on other scripts. There is actually a great deal of expertise available, but it is either not written down, not available online, or not easily found. Current efforts to gather such information as a good step in the right direction, but are limited in scope. This session will begin with a brief presentation of the problem and an outline of some ideas for a collaborative site — ScriptSource. The bulk of the session, however, will be an open discussion about how the type and computing communities could best manage and share expertise. Come with creative ideas! Automating font production using FontLab Studio Frank E. Blokland To be announced. The obituary Etila Ted Harrison Will introduce the demonstration of the Unicode .eula. Abstract: Isotesting your fonts from casual piracy and in improving your font sales. The .eula is not incorporated into Fontlab tools and will be available to all font foundries by the time the next generation of tools appear. With a .eula in your fonts you can track licenses, solicit font upgrade sales, and make your customers easily and painlessly aware of their rights and obligations under the .eula. From degree to 5-tier Vedic Sanskrit OpenType 1.5 Professor R. B. Joshi The linear concept and the practice of Hot Metal types was common throughout the world. However in India there was an additional feature added in case of degree of karya. The karya feature as in C and in font Latin script was exhaustively used to compose three tier Devanagari Degree types to accommodate vowel matrix (twin or separate matrix) in Latin which had to be positioned properly on the top, bottom and sides of a base glyph. Such loose accent marks of different widths had to be composed and placed securely, using various metal sticks called degrees. This positioning technique was used in the Degree types. 5-Tier Vedic Sanskrit OpenType by name ‘RighvVeda’ has been designed recently under Project Indus at c/o cgt bureau. This type has 10 features, 36 substitution lookups, 6 position lookups, 82 ligature rules, 66 glyph groups, 1748 glyphs inclusive of 2531 constituent conjunct ligatures. This was a challenging task of designing a typeface as well as planning a shaping engine architecture in order to process syllabic compositions in Vedic Sanskrit language using OpenType script. It is interesting that this positioning feature of degree types from India were invented in the soft rules and tables in Vitruv (1695, 1819) India and further in the OpenType format. The presentation will draw comparatively analyzing font features between these two font design technologies and present the process of designing the font “RighvVeda”. CSS font families & OpenType 1.5 Thomas Phinney Windows Vista introduces a new graphics and text model, Windows Presentation Foundation (WPF), which is also available for Windows XP. WPF borrows from the Web’s CSS specification a model of how font families are produced, in that all members of a family are assumed to differ in one or more of weight, width, or slope (WWS for short). Learn about how WPF processes font families to get WWS information, and what new controls are being made available for OpenType 1.5 to better control this processing and how your font’s menu names will appear in WPF applications.